我公司拥有所有研究报告产品的唯一著作权,当您购买报告或咨询业务时,请认准“智研钧略”商标,及唯一官方网站智研咨询网(www.chyxx.com)。若要进行引用、刊发,需要获得智研咨询的正式授权。
- 报告目录
- 研究方法
智研咨询发布的《2024-2030年中国机器学习行业市场现状调查及投资前景研判报告》共九章。首先介绍了机器学习行业市场发展环境、机器学习整体运行态势等,接着分析了机器学习行业市场运行的现状,然后介绍了机器学习市场竞争格局。随后,报告对机器学习做了重点企业经营状况分析,最后分析了机器学习行业发展趋势与投资预测。您若想对机器学习产业有个系统的了解或者想投资机器学习行业,本报告是您不可或缺的重要工具。
本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。
第一章机器学习相关介绍
1.1 人工智能相关概念
1.1.1 人工智能的定义
1.1.2 人工智能产业链
1.1.3 人工智能基本要素
1.2 机器学习的概念
1.2.1 机器学习的定义
1.2.2 机器学习开发平台
1.2.3 机器学习的原理
1.2.4 机器学习应用范围
1.3 机器学习的分类
1.3.1 按学习模式不同分类
1.3.2 按算法网络深度分类
第二章2019-2023年人工智能行业发展综合分析
2.1 全球人工智能行业发展综述
2.1.1 人工智能发展历程
2.1.2 人工智能支持政策
2.1.3 人工智能市场规模
2.1.4 人工智能区域分布
2.1.5 人工智能市场结构
2.1.6 人工智能专利数量
2.1.7 人工智能融资规模
2.1.8 人工智能应用状况
2.2 中国人工智能市场运行状况
2.2.1 人工智能发展历程
2.2.2 人工智能产业政策
2.2.3 人工智能市场规模
2.2.4 人工智能软件规模
2.2.5 人工智能企业数量
2.2.6 人工智能发展现状
2.2.7 人工智能从业人员
2.2.8 人工智能融资规模
2.3 人工智能基础层
2.3.1 基础层产业链价值
2.3.2 基础层发展历程
2.3.3 基础层市场规模
2.3.4 基础层发展现状
2.3.5 基础层融资规模
2.3.6 基础层发展问题
2.3.7 基础层发展趋势
2.4 人工智能技术层
2.4.1 技术层发展现状
2.4.2 人工智能技术全景
2.4.3 人工智能技术水平
2.4.4 人工智能技术分布
2.4.5 人工智能技术成熟度
2.4.6 人工智能热点技术
2.4.7 人工智能专利数量
2.4.8 自然语音处理技术
2.4.9 生物特征识别技术
2.4.10 知识图谱技术
2.4.11 计算机视觉技术
2.4.12 语音语义技术
2.4.13 人工智能技术平台
2.4.14 技术层发展问题
2.4.15 技术层发展趋势
2.5 人工智能应用层
2.5.1 应用层发展现状
2.5.2 各应用层成熟度
2.5.3 应用层市场结构
2.5.4 应用层发展问题
2.5.5 应用层发展趋势
2.5.6 人工智能医疗领域应用
2.5.7 人工智能金融领域应用
2.5.8 人工智能智慧城市应用
2.5.9 人工智能教育领域应用
2.5.10 人工智能制造业应用
2.6 部分城市人工智能产业发展状况
2.6.1 上海市
2.6.2 北京市
2.6.3 深圳市
2.6.4 杭州市
2.7 中国人工智能行业发展趋势分析
2.7.1 人工智能总体发展趋势
2.7.2 人工智能宏观趋势研判
2.7.3 人工智能技术发展研判
2.7.4 人工智能应用场景研判
2.7.5 人工智能市场规模预测
第三章2019-2023年机器学习行业发展综合分析
3.1 全球机器学习行业发展综述
3.1.1 机器学习市场规模分析
3.1.2 机器学习行业发展动力
3.1.3 机器学习市场竞争格局
3.1.4 机器学习发展面临挑战
3.1.5 机器学习企业竞争优势
3.1.6 机器学习市场前景预测
3.2 中国机器行业发展现状分析
3.2.1 机器学习行业发展历程
3.2.2 机器学习行业政策回顾
3.2.3 机器学习市场规模分析
3.2.4 机器学习市场区域分布
3.2.5 机器学习市场竞争格局
3.2.6 机器学习平台市场份额
3.2.7 机器学习行业制约因素
3.3 中国机器学习行业技术发展状况
3.3.1 机器学习技术发展路线
3.3.2 机器学习专利申请数量
3.3.3 机器学习技术发展现状
3.3.4 机器学习技术成熟度
3.3.5 机器学习技术研究进展
3.3.6 机器学习技术研究趋势
第四章中国机器学习产业链综合分析
4.1 机器学习产业链构成
4.2 机器学习产业链上游分析
4.2.1 人工智能芯片主要类型
4.2.2 人工智能芯片市场规模
4.2.3 人工智能芯片供应商
4.2.4 云计算市场规模分析
4.2.5 云计算平台服务商
4.2.6 云计算代表企业介绍
4.2.7 大数据技术体系图谱
4.2.8 大数据服务商分析
4.2.9 大数据市场规模分析
4.2.10 大数据市场支出规模
4.2.11 大数据行业应用结构
4.2.12 大数据产业人才需求
4.3 机器学习产业链中游分析
4.3.1 机器学习技术服务商
4.3.2 机器学习平台厂商
4.3.3 机器学习开放平台
4.3.4 机器学习开源发展
4.4 机器学习产业链下游概述
4.4.1 机器学习应用服务商
4.4.2 机器学习应用领域概况
4.4.3 基于GPU的机器学习应用
第五章2019-2023年深度学习行业发展深度分析
5.1 深度学习行业发展综述
5.1.1 深度学习基本概念
5.1.2 深度学习发展历程
5.1.3 深度学习所处阶段
5.1.4 深度学习主要功能
5.1.5 深度学习发展动力
5.1.6 深度学习融合发展
5.2 深度学习市场运行现状分析
5.2.1 深度学习竞争格局
5.2.2 细分市场发展现状
5.2.3 预训练模型现状分析
5.2.4 深度学习融资现状
5.2.5 深度学习应用领域
5.2.6 深度学习发展问题
5.2.7 深度学习发展建议
5.3 深度学习开源框架市场分析
5.3.1 深度学习框架发展历程
5.3.2 深度学习框架主要作用
5.3.3 深度学习框架驱动因素
5.3.4 深度学习框架市场份额
5.3.5 开源框架市场竞争格局
5.3.6 选择开源框架的考量因素
5.4 深度学习行业发展前景及趋势分析
5.4.1 深度学习应用前景
5.4.2 深度学习发展趋势
5.4.3 深度学习技术趋势
5.4.4 模型小型化发展方向
第六章中国机器学习行业应用领域发展分析
6.1 机器学习算法应用场景分析
6.1.1 分类算法应用场景
6.1.2 回归算法应用场景
6.1.3 聚类算法应用场景
6.1.4 关联规则应用场景
6.2 机器学习在医疗领域中的应用
6.2.1 主要应用场景
6.2.2 医疗影像智能诊断
6.2.3 新药研发
6.2.4 基因测序
6.3 机器学习在金融领域中的应用
6.3.1 主要应用场景
6.3.2 联邦学习
6.3.3 金融科技
6.3.4 智能风控
6.3.5 智慧银行
6.3.6 智慧投顾
6.4 机器学习在农业领域中的应用
6.4.1 应用意义
6.4.2 应用现状
6.4.3 应用问题
6.4.4 应用展望
6.5 机器学习在制造业中的应用
6.5.1 应用优势
6.5.2 智能工厂
6.5.3 智能物流
6.5.4 智能系统
6.5.5 缺陷检测
6.5.6 预测性维护
6.5.7 生成设计
6.5.8 能耗预测
6.5.9 供应链管理
6.6 机器学习在智慧城市中的应用
6.6.1 智能政务
6.6.2 智能基础设施系统
6.6.3 智能交通
6.6.4 自动驾驶
6.6.5 安防行业
6.7 机器学习在教育领域中的应用
6.7.1 智慧校园
6.7.2 智慧课堂
6.7.3 智适应教学
第七章国内外企业主要机器学习产品及应用分析
7.1 全球主要科技企业机器学习布局
7.2 机器学习在国外企业中的应用
7.2.1 亚马逊机器学习应用
7.2.2 苹果公司机器学习应用
7.2.3 Ayasdi机器学习应用
7.2.4 Digital Reasoning机器学习应用
7.2.5 Facebook机器学习应用
7.2.6 谷歌机器学习应用
7.2.7 IBM Watson机器学习应用
7.2.8 QBurst机器学习应用
7.2.9 高通机器学习应用
7.2.10 Uber机器学习应用
7.3 机器学习在国内企业中的应用
7.3.1 百度机器学习云平台
7.3.2 阿里云机器学习平台
7.3.3 腾讯智能钛机器学习
7.3.4 第四范式AutoML平台
第八章中国机器学习重点企业经营分析
8.1 商汤科技
8.1.1 企业发展概况
8.1.2 经营效益分析
8.1.3 企业商业模式
8.1.4 机器学习布局
8.1.5 企业融资状况
8.1.6 企业应用场景
8.2 第四范式
8.2.1 企业发展概况
8.2.2 机器学习平台
8.2.3 企业融资规模
8.2.4 企业竞争优势
8.2.5 企业研发投入
8.2.6 企业应用场景
8.3 旷视科技
8.3.1 企业发展概况
8.3.2 企业经营效益
8.3.3 企业资产规模
8.3.4 企业业务构成
8.3.5 企业研发投入
8.3.6 机器学习技术
8.4 科大讯飞
8.4.1 企业发展概况
8.4.2 经营效益分析
8.4.3 业务经营分析
8.4.4 财务状况分析
8.4.5 核心竞争力分析
8.4.6 公司发展战略
8.5 浪潮集团
8.5.1 企业发展概况
8.5.2 经营效益分析
8.5.3 业务经营分析
8.5.4 财务状况分析
8.5.5 核心竞争力分析
8.5.6 公司发展战略
8.6 百度飞桨
8.6.1 企业发展概况
8.6.2 企业发展历程
8.6.3 平台技术优势
8.6.4 企业核心竞争力
8.6.5 深度学习发展
8.6.6 平台应用场景
8.7 索信达控股
8.7.1 企业发展概况
8.7.2 企业发展历程
8.7.3 业务经营分析
8.7.4 核心竞争力分析
8.7.5 公司发展战略
8.8 其他企业
8.8.1 九章 云极
8.8.2 阿里云
8.8.3 华为云
8.8.4 京东云
8.8.5 腾讯云
8.8.6 百分点
8.8.7 天云数据
第九章2024-2030年中国机器学习行业投资分析及前景预测
9.1 中国机器学习行业投资分析
9.1.1 机器学习投资状况分析
9.1.2 机器学习进入壁垒分析
9.2 中国机器学习行业发展前景分析
9.2.1 机器学习市场发展前景
9.2.2 机器学习行业发展方向
9.2.3 机器学习市场空间预测
9.3 机器学习技术发展趋势分析
9.3.1 发展胶囊网络技术
9.3.2 发展生成对抗网络
9.3.3 发展深度强化学习
9.3.4 可解释性机器学习
9.4 2024-2030年中国机器学习行业预测分析
9.4.1 2024-2030年中国机器学习行业影响因素分析
9.4.2 2024-2030年中国机器学习市场规模预测
◆ 本报告分析师具有专业研究能力,报告中相关行业数据及市场预测主要为公司研究员采用桌面研究、业界访谈、市场调查及其他研究方法,部分文字和数据采集于公开信息,并且结合智研咨询监测产品数据,通过智研统计预测模型估算获得;企业数据主要为官方渠道以及访谈获得,智研咨询对该等信息的准确性、完整性和可靠性做最大努力的追求,受研究方法和数据获取资源的限制,本报告只提供给用户作为市场参考资料,本公司对该报告的数据和观点不承担法律责任。
◆ 本报告所涉及的观点或信息仅供参考,不构成任何证券或基金投资建议。本报告仅在相关法律许可的情况下发放,并仅为提供信息而发放,概不构成任何广告或证券研究报告。本报告数据均来自合法合规渠道,观点产出及数据分析基于分析师对行业的客观理解,本报告不受任何第三方授意或影响。
◆ 本报告所载的资料、意见及推测仅反映智研咨询于发布本报告当日的判断,过往报告中的描述不应作为日后的表现依据。在不同时期,智研咨询可发表与本报告所载资料、意见及推测不一致的报告或文章。智研咨询均不保证本报告所含信息保持在最新状态。同时,智研咨询对本报告所含信息可在不发出通知的情形下做出修改,读者应当自行关注相应的更新或修改。任何机构或个人应对其利用本报告的数据、分析、研究、部分或者全部内容所进行的一切活动负责并承担该等活动所导致的任何损失或伤害。
01
智研咨询成立于2008年,具有15年产业咨询经验
02
智研咨询总部位于北京,具有得天独厚的专家资源和区位优势
03
智研咨询目前累计服务客户上万家,客户覆盖全球,得到客户一致好评
04
智研咨询不仅仅提供精品行研报告,还提供产业规划、IPO咨询、行业调研等全案产业咨询服务
05
智研咨询精益求精地完善研究方法,用专业和科学的研究模型和调研方法,不断追求数据和观点的客观准确
06
智研咨询不定期提供各观点文章、行业简报、监测报告等免费资源,践行用信息驱动产业发展的公司使命
07
智研咨询建立了自有的数据库资源和知识库
08
智研咨询观点和数据被媒体、机构、券商广泛引用和转载,具有广泛的品牌知名度
品质保证
智研咨询是行业研究咨询服务领域的领导品牌,公司拥有强大的智囊顾问团,与国内数百家咨询机构,行业协会建立长期合作关系,专业的团队和资源,保证了我们报告的专业性。
售后处理
我们提供完善的售后服务系统。只需反馈至智研咨询电话专线、微信客服、在线平台等任意终端,均可在工作日内得到受理回复。24小时全面为您提供专业周到的服务,及时解决您的需求。
跟踪回访
持续让客户满意是我们一直的追求。公司会安排专业的客服专员会定期电话回访或上门拜访,收集您对我们服务的意见及建议,做到让客户100%满意。